
Visualizing Linked Data as Habitable Cities

Klaas Andries de Graaf1 and Ali Khalili1

Department of Computer Science, Vrije Universiteit Amsterdam, NL
{ka.de.graaf,a.khalili}@vu.nl

Abstract. The comprehension of linked data, consisting of classes, in-
dividuals, attributes, relationships, and other elements, is challenging
yet important for effective use of linked data. An approach to improve
software program comprehension is through the code city metaphor, in
which object-oriented source code is visualized as a habitable city in 3D.
We propose the linked-data city metaphor to support comprehension of
linked data. Through improved linked data comprehension we in turn
aim to support users in browsing linked data and in analyzing the struc-
ture of linked data. We discuss how different mappings and visualization
of properties in the city metaphor may support users in browsing and
structural analysis of linked data. A prototype implementation of linked
data city in LD-R, a linked data-aware faceted browser, is presented.

1 Introduction

The comprehension of linked data, consisting of ontology classes, individuals,
attributes, relationships, and other elements, is challenging yet important for
effective use of these repositories. The size and complexity of linked data repos-
itories makes it difficult for users to get an overview, and feel a sense of locality
of the objects in a link data repository. In this paper we propose an approach to
improve linked data comprehension of users via 3D visualization of linked data
objects in a habitable, i.e., livable real-world, environment.

The code city metaphor [14] visualizes object-oriented source code as a hab-
itable city in 3D to improve program comprehension. This in turn supports
developers in browsing through code repositories and also supports software de-
signers to discover flaws and improvements in the structure of software systems.
Multiple source code elements are visualized; the districts of a city represent
packages, the buildings represent classes, the building height (Y-axis) represents
the number of methods in a class, and the building width (X-axis) and depth
(Z-Axis) represent the number of class attributes.

The goal of the code city approach is to create a visual ’habitable’ envi-
ronment, where one feels at home, in order to improve program comprehension
through familiarity [13]. A city metaphor is intuitive to users because cities are
found in the real works [10].

Wettel et al. argue in [13] that users of many existing code visualization
approaches lack the notion of habitability. In 2D approaches the users lack a
sense of physical space and in 3D approaches users lack a sense of locality, leading



to disorientation and lowering program comprehension [13]. This disorientation
is also a problem in 3D visualization of linked data [7].

Visualizing a habitable environment, to which users can relate and orientate
themselves in, addresses these challenges. The code city metaphor also improves
comprehension compared to non-visual tools; empirical evidence from an experi-
ment with 41 industry and academic participants shows that increased program
comprehension via the code city metaphor results in a significant increase in task
correctness and completion time compared to non-visual exploration tools [17].

We believe that this solution is transferable to linked data visualization, as
the structure of linked data and object-oriented source code is similar in many
aspects. Code city visualizes object-oriented source code, which contains classes,
properties, relationships, and instances. Similarly, linked data contains ontology
classes, properties, relationships, and instances, and this similarity allows us to
apply the code city metaphor to linked data. We can visualize these dimensions
of Linked Data using the three dimensions (X, Y, Z) of buildings in a linked
data city. Using various mappings, e.g., instances mapped to building height,
and properties mapped to building width, the various elements of linked data
can be visualized according to the users’ needs when browsing and evaluating
the structure of linked data. Use of information landscapes, such as a code city,
is also proposed by Katifori et al. in [7] as a promising research direction in
visualization of linked data.

We propose a Linked Data City (LD-city) approach, based on the code city
metaphor, which aims to support users in browsing linked data repositories and
in analyzing the structure of linked data. We discuss how different mappings
and visualization of linked data properties in the city metaphor support users
in browsing and structural analysis of linked data. A prototype implementation
of LD-city in LD-R [8], a Linked Data-aware faceted browser, is presented, and
we discuss how possible anti-patterns and design flaws in Linked Data can be
detected, inspired by the detection of design flaws in visualized software code.

2 The Proposed Architecture for LD-City

As depicted in Figure 1, there are three main requirements to create an LD-City
environment:

1. Identifying a set of content and structural attributes of interest.
Structural attributes allow to represent a dataset in a general form (e.g. the

number of distinct classes or properties, or the number of instances per class)
while content attributes focus on features which are specific to a dataset and are
not necessarily generalizable to other datasets (e.g. age or gender property). It is
the task of an ontology engineer or data scientist to define those attributes of in-
terest. SPARQL queries can be then used to collect the values for the designated
attributes.

2. Map the selected attributes to a set of predefined 3D objects which represent
a city.

This is the core-task for building an LD-City environment which deals with

ii



LD-City Environment

Linked Data

Q
u
e
r
y

Structural
Attributes

Content
Attributes

Mapping
Configurations

Adaptation

Interactive 3D 
Objects

Fig. 1: Our proposed architecture for LD-City together with an screenshot.

defining the right metaphors to represent the extracted attributes using real-
world city objects which are familiar to users. As an example mapping, one can
configure the environment so that the height of a building represents the number
of class instances, and the width+depth of the building represents the number
of class attributes. Or for example, instead of building height representing the
number of instances, it could also represent the number of object properties
to show that a class has many semantic relationships to other classes. Another
variation is that the height of a building represents the average number of object
properties (semantic relationships) that instances of a class have. In small linked
data sets we could map class instances as buildings.

3. Provide some mechanisms for user adaptation while browsing the data.
Adaptation is an important feature in such a 3D environment where users can

have a variety of interactions e.g. zooming in and out, rotating, click, mouseover,

iii



etc. The mappings configuration should be dynamic based on user interaction;
if a user clicks on a building, representing a class, the city metaphor might be
applied to visualize its instances as buildings. Clicking on semantic relationships
represented as rivers or streets could trigger a more fine-grained city metaphor,
which visualizes how the semantic relationships are used in the linked data set.

There can be also automatic adaptation by automatically providing data-
aware mappings for users based on the content of a linked data repository, i.e.,
content-based mappings. For example, when several classes have attribute ’age’,
we can use the height of a building to represent the average age of class in-
stances. Another example is to map buildings in a linked data city based on the
geo-coordinates of class-instances, possibly combined with the Google maps or
earth API. Visualizing and browsing data based on multiple mappings, and sup-
port for user interaction and data-aware mappings, enables serendipitous data
discovery - the discovery of interesting and valuable facts not initially sought
for. This is valuable for the field of data science. A user can switch between dif-
ferent mappings and visualizations to see different patterns in a linked data city,
focused on, e.g., the number of instance, data and object properties of classes
and instances, class restrictions, class axioms, et cetera.

Providing Polymorphic Shapes is another mechanism for adaptation. For ex-
ample, as described before, the building height can represent the number of
instances a class contains, compared to the class with the most instances. For
example, a class with 50 instances will have height 50% if the largest class in
the dataset has 100 instances. This is a linear mapping of height. In [13] Wettel
et al. propose a boxplot-based and a threshold-based mapping to produce dif-
ferent building types; houses, mansions, apartment blocks, office buildings, and
skyscrapers. The motivation behind the mappings in [13] is to improve habit-
ability - the building types are recognizable and representative of buildings in
a real city - and thereby improve program comprehension. This mapping to a
predefined set of building shapes in [13] is supported by the gestalt principle [4]
- which is that human recognition is optimal with a maximum of 4 to 6 different
shapes. In future work we also want to implement mappings to different building
types to further improve comprehension of linked data.

The mappings of classes to buildings could also be extended to include map-
pings to other objects in the city, such as parks, hotels, rivers, roads, and nested
buildings (buildings on top of other buildings), e.g., to visualize super-subclass
relationships. This may further improve habitability of linked data cities, by
making linked data cities look more like a photograph or map of a real-life city.
Moreover, it provides more options for mappings, allowing a linked data city to
convey more information about different elements and dimensions of a linked
data repository. In [10] Panas et al. propose to visualize the flow of data be-
tween components as moving cars in a code city to, and similarly we could use
(moving) cars to represent the (usage of) semantic relationships between classes.

Using a specific color mapping may again convey more information about a
linked data set, e.g., classes that are internally defined in a linked data repository
are shown as green buildings, whilst classes defined in other repositories are

iv



shown as blue buildings. Using more realistic colors will improve habitability,
and thereby comprehension of linked data repositories, e.g., colors that occur
most often in cities; gray representing concrete buildings, glass-blue for windowed
buildings, and brown or red for bricks and mortar buildings. Panas et al. even
use realistic textures on buildings in their code city in [10].

3 A proof-of-concept Implementation for LD-City

We implemented a proof-of-concept version of linked data city using Node.js
1 (client-side and server-side JavaScript), Three.js 2 (an abstraction of We-
bGL in the OpenGL stack), and React 3 (Facebook’s library for building user
interfaces). Our code is open source and available at https://github.com/

ali1k/ld-r/tree/Linked-Data-City. The main logic of linked data city is im-
plemented in a single dataset component: https://github.com/ali1k/ld-r/
blob/Linked-Data-City/components/dataset/Dataset3D.js.

The current implementation expects a JavaScript Object Notation (JSON)
file with information about classes and instances in a linked data repository. A
city with buildings is generated based on this file. This file contains the results of
SPARQL queries to extract content and structural attributes of a given dataset.

In our initial implementation the height of buildings visualizes the number of
class instances, and the width and depth of the buildings (its base) visualizes the
number of class attributes, as depicted in Figure 1. We think this representation
is fairly intuitive; a class that has many instances and many attributes results
in a tall wide building that takes up much space because its instances with a lot
of attributes represent a lot of data in a linked data set. Conversely, a class that
has few attributes and many instances results in a tall slender building, as its
instances and attributes take up relative little data.

The code city metaphor has previously been adopted to e.g. visualize JavaScript
code repositories in JScity 4 in 3D in a browser using JavaScript and Three.js.
The underlying technology is similar to ours, which also visualizes the city
metaphor in modern web-browsers using JavaScript and three.js.

Our linked data city implementation is part of the Linked Data Reactor
(LD-R) 5 [8]. LD-R is currently used in the SMS6 platform as a technical core
element within the RISIS.eu project to view, browse, and edit linked data related
for Science, Technology and Innovation (STI) studies.

In future work we plan to further integrate linked data city with LD-R, to
allow users to select different mappings. Moreover, we want to allow users to
show details of classes, instances, relationships, by clicking on the classes, and
support navigation to information pages on different classes and instances. We
also plan to make a stand-alone version of linked data city which makes use of

1 https://nodejs.org/
2 https://threejs.org/
3 https://facebook.github.io/react/
4 https://github.com/aserg-ufmg/JSCity
5 http://ld-r.org
6 http://sms.risis.eu

v

https://github.com/ali1k/ld-r/tree/Linked-Data-City
https://github.com/ali1k/ld-r/tree/Linked-Data-City
https://github.com/ali1k/ld-r/blob/Linked-Data-City/components/dataset/Dataset3D.js
https://github.com/ali1k/ld-r/blob/Linked-Data-City/components/dataset/Dataset3D.js
https://nodejs.org/
https://threejs.org/
https://facebook.github.io/react/
https://github.com/aserg-ufmg/JSCity
http://ld-r.org
http://sms.risis.eu


connections to SPARQL query endpoints. We envision that this version makes
use of predefined or user-defined queries to retrieve and visualize the linked data
repositories behind the SPARQL query endpoint as a linked data city.

4 Potential Applications of the LD-City Metaphor
Wettel et al. used the code city metaphor in [16] to visualize design flaws and
’bad smells’ [5] (signs of decline in code quality) in a code repository using
metric-based detection strategies. For example, god classes (a class with many
methods) can be easily detected and visualized as buildings that are very tall, and
data classes (a class with many attributes and few methods) can be detected
and visualized as buildings that are very broad. Such classes may indicate a
monolithic code structure, which negates the benefits of detailed fine-grained
object-oriented design. Similarly, possible god classes are already visualized in
our prototype implementation of linked data city as tall buildings, which have
many instances, and data classes are visualized as broad buildings, containing
many attributes. An ontology engineer might consider splitting identified god
and data classes up into multiple classes, to have a detailed and fine-granularity
definition of classes and instantiated linked data.

The detection strategies in [16] use logical conditions and code metrics to
highlight buildings (i.e., code structures) that might be flawed. Similarly, LD-
City can be utilized to highlight buildings (ontology classes) and other elements
in a linked data city based on conditions and metrics. To determine what these
conditions and metrics should be, one need to investigate existing ontology en-
gineering and knowledge engineering design principles, e.g., work on ontology
design principles in [6] and ontology anti-patterns in [11].

Next to data and god classes, other design flaws identified in software en-
gineering might be applicable to linked data. For example, feature envy, where
instances of a class use a lot of attributes of other classes (in software: many
methods from another class are used). Another example is detection of lazy or
freeloader classes - classes that seem to do little and might not be necessary
- and we can already detect these in linked data city as very small buildings,
with little to no instances. Using appropriate conditions and metrics, such as the
number of object properties (semantic relationships) referring to candidate lazy
classes, we could effectively highlight these for the user who performs structural
analysis.

Visualizing linked data evolution in the city metaphor using a time dimen-
sion is also a promising direction. In [15] the visualization of software evolution
over time in the city metaphor, via age maps (where different colors indicates
timestamps), time travel, and a timeline, allows for retracing software design
decisions and possible design anti-patterns. Similarly, visualizing the time evolu-
tion of a linked data repository shows valuable insights for ontology engineers [7],
e.g., ontology design decisions in time, ontology refactoring events, and design
anti-patterns over time. Moreover, time visualization may provide valuable in-
sights for domain experts [7] and data scientist, e.g., events that mark large-scale
adoption of a linked data repository, class usage over time, and events that show
linking of data sets and classes from linked data repositories in different domains.

vi



LD-City can also be exploited to compare multiple linked data repositories
and data sets. This may, for example, be used for analogical reasoning by com-
paring linked data sets that are used for a similar or different domain but which
differ in structure, in order to discover best practices. Moreover, comparing dif-
ferent ontologies seems valuable for ontology alignment as the linked data city
visualizes the usage and significance of different classes in terms of instances and
attributes,

5 Related Work

Wettel et al. proposed a habitable code city for program comprehension in [14],
and Panas et al. more recently proposed a code city for software product visual-
ization in [10] with a more habitable environment (compared to [14]), including
clouds, roads, trees, lamp-posts, bodies of water, and realistically building tex-
tures. Other uses of the code city metaphor are software world, proposed by
Knight et al. in [9], and Component City by Charter et al. in [2].

Existing 3D visualization approaches for ontology visualization, which in-
cludes visualization of linked data, make use of cones, cubes, (disk) tree(map)s,
spheres, pyramids, and nodes [7]. Two data visualization approaches use a land-
scape (but not a city) metaphor, namely, Strasnick et al. in [12] to visualize a
UNIX file system structure, and Eyi to visualize hypertext documents in [3].
Katifori et al. argue in [7] that hypertext document visualization as a landscape
in [3] is useful for ontology visualization. In this paper we propose a similar
approach in detail, though using a city instead of the landscape metaphor.

Very related work was recently done by Baumeister et al. who proposed a
linked data city for Visualization of Linked Enterprise Data in [1]. Thus we are
not the first to propose a linked data city metaphor. Their work is also based
on Wettel et al. in [14], and technically more mature than ours, but applied to
the specific domain of Enterprise data and a case study in which annotations of
a technical documentation corpus are visualized. Our focus on a more generic
linked data city and our discussion of habitability, mappings, and detecting de-
sign flaws are major differentiation.

6 Conclusions and Future Work

Visualizing source code as a habitable city in 3D provides users with a sense of
locality and orientation and thereby improves program comprehension. Similarly,
we propose to visualize linked data as a habitable city in 3D, to improve compre-
hension of data when browsing and analyzing linked data. We present a proof-of-
concept implementation of linked data city, and discuss possible mappings and
visualizations of linked data objects and properties in the city metaphor.

Future work to our prototype implementation includes, among other things,
user interactions to support navigation, further integration with LD-R, genera-
tion of different building types and realistic colors to increase habitability, sup-
port for connecting with SPARQL endpoints, and creation of a stand-alone ver-
sion that can be easily adopted and integrated into other systems. We also want
to define and support different mappings of linked data objects, properties, and

vii



metrics to a city, e.g., data-driven mappings that visualize age or geo-location of
class instances in a city, and mappings to objects other than buildings, e.g., to
districts, parks, roads, train-tracks, and other real-life elements in a city. Next
to a city metaphor, the use of a landscape metaphor, and a visualization of a
time-dimension to show linked data evolution seems promising future work.

References

1. J. Baumeister, S. Furth, L. Roth, and V. Belli. Linked data city - visualization of
linked enterprise data. pages 145–152.

2. S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visualisation for informed
decision making; from code to components. In SEKE 02: Intl. Conference on
Software engineering and knowledge engineering, pages 765–772. ACM Press, 2002.

3. M. Eyl. The harmony information landscape: Interactive, three dimensional navi-
gation through an information space, 1995.

4. S. Few. Show Me the Numbers: Designing Tables and Graphs to Enlighten. Ana-
lytics Press, 1st edition, 2004.

5. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 1st edition, 1999.

6. T. R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

7. A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontol-
ogy visualization methods - a survey. ACM Comput. Surv., 39(4), Nov. 2007.

8. A. Khalili. Linked data reactor: a framework for building reactive linked data
applications. In Joint Proceedings of the 4th International Workshop on Linked
Media and the 3rd Developers Hackshop co-located with the 13th Extended Semantic
Web Conference ESWC 2016, Heraklion, Crete, Greece, May 30, 2016., 2016.

9. C. Knight and M. Munro. Virtual but visible software. In IEEE International
Conference on Information Visualization, pages 198–205. IEEE, 2000.

10. T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for software production
visualization. In Intl. Conference on Information Visualization, page 314, 2003.

11. C. Roussey, Ó. Corcho, and L. M. V. Blázquez. A catalogue of OWL ontology
antipatterns. In International Conference on Knowledge Capture (K-CAP 2009),
September 1-4, 2009, Redondo Beach, California, USA, pages 205–206, 2009.

12. S. Strasnick and J. Tesler. Method and apparatus for displaying data within a
three-dimensional information landscape, June 18 1996. US Patent 5,528,735.

13. R. Wettel and M. Lanza. Program comprehension through software habitability.
In 15th International Conference on Program Comprehension (ICPC 2007), June
26-29, 2007, Banff, Alberta, Canada, pages 231–240, 2007.

14. R. Wettel and M. Lanza. Visualizing software systems as cities. In Proceedings of
the 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis, VISSOFT 2007, June, 2007, pages 92–99, 2007.

15. R. Wettel and M. Lanza. Visual exploration of large-scale system evolution. In
WCRE 2008, Proceedings of the 15th Working Conference on Reverse Engineering,
Antwerp, Belgium, October 15-18, 2008, pages 219–228, 2008.

16. R. Wettel and M. Lanza. Visually localizing design problems with disharmony
maps. In Proceedings of the ACM 2008 Symposium on Software Visualization,
Ammersee, Germany, September 16-17, 2008, pages 155–164, 2008.

17. R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a controlled
experiment. In ICSE, pages 551–560, 2011.

viii


	Visualizing Linked Data as Habitable Cities

