
Adaptive Linked Data-driven Web Components:
Building Flexible and Reusable Semantic Web Interfaces

Ali Khalili
Dept. of Computer Science
VU University Amsterdam

The Netherlands
a.khalili@vu.nl

Antonis Loizou
Dept. of Computer Science
VU University Amsterdam

The Netherlands
a.loizou@vu.nl

Frank van Harmelen
Dept. of Computer Science
VU University Amsterdam

The Netherlands
frank.van.harmelen@vu.nl

ABSTRACT
Due to the increasing amount of Linked Data openly pub-
lished on the Web, user-facing Linked Data Applications
(LDAs) are gaining momentum. One of the major entrance
barriers for Web developers to contribute to this wave of
LDAs is the required knowledge of Semantic Web technolo-
gies such as the RDF data model and SPARQL query lan-
guage. This paper presents an adaptive component-based
approach together with its open source implementation for
creating flexible and reusable Semantic Web interfaces driven
by Linked Data. Linked Data-driven (LD-R) Web compo-
nents abstract the complexity of the underlying Semantic
Web technologies in order to allow reuse of existing Web
components in LDAs, enabling Web developers who are not
experts in Semantic Web to develop interfaces that view,
edit and browse Linked Data. In addition to the modular-
ity provided by the LD-R components, the proposed RDF-
based configuration method allows application assemblers to
reshape their user interface for different use cases, by either
reusing existing shared configurations or by creating their
proprietary configurations.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; D.2.11 [Software Engineering]: Reusable Soft-
ware: reusable libraries , reuse models

General Terms
Design, Human Factors, Performance, Standardization

1. INTRODUCTION
With the growing number of structured data published, the
Web is moving towards becoming a rich ecosystem of machine-
understandable Linked Data1. Semantically structured data
facilitates a number of important aspects of information

1lodlaundromat.org recently (15.10.2015) reported approx.
38.6 billion triples published on the Web.

management such as information retrieval, search, visual-
ization, customization, personalization and integration [11].
Despite all these benefits, Linked Data Applications (LDAs)
are not yet adopted by the large community of Web develop-
ers outside the Semantic Web domain and, causally, by the
end-users on the Web. The usage of semantic data is still
quite limited and most of the currently published Linked
Data is generated by a relatively small number of publish-
ers [6] which points to entrance barriers for the wide-spread
utilization of Linked Data [2].

The current communication gap between Semantic Web de-
velopers and User Experience (UX) designers, caused by the
need to bear Semantic Web knowledge, prevents the stream-
lined flow of best practices from the UX community into
Linked Data user interface (UI) development. The resulting
lack of adoption and standardization often makes current
LDAs inconsistent with user expectations and impels more
development time and costs on LDA developers. In this situ-
ation, more time is spent in re-designing existing UIs rather
than focusing on innovation and creation of sophisticated
LDAs.

This paper presents adaptive Linked Data-driven Web com-
ponents as an approach to build flexible and reusable Se-
mantic Web UIs. Web Components are a set of W3C stan-
dards [5] that enable the creation of custom, reusable user
interface widgets or components in Web documents and Web
applications. The Resource Description Framework (RDF),
on the other hand, provides a common data model that al-
lows data-driven components to be created, shared and in-
tegrated in a structured way across different applications.
Linked Data-driven (LD-R) Web components as defined in
this paper are a species of Web components that employ the
RDF data model for representing their content and specifi-
cation (i.e. metadata about the component). LD-R compo-
nents are supported by a set of predefined core Web com-
ponents, each representing a compartment of the RDF data
model on the Web UI. Thus, the Semantic Web nature of
an LDA can be encapsulated in LD-R components thereby
allowing UX designers and Web developers outside the Se-
mantic Web community to contribute to LDAs. The compo-
nents also provide current Semantic Web developers with a
mechanism to reuse existing Web components in their LDAs.
Furthermore, LD-R components exploit the power and flex-
ibility of the RDF data model in describing and sharing re-
sources to provide a mechanism to adapt the Web interfaces
based on the meaning of data and user-defined rules.

lodlaundromat.org

The LD-R approach offers many benefits that we will de-
scribe in the remainder of the paper. Among them are:

Bootstrapping LDA UIs. LD-R components exploit best
practices from modern Web application development to bring
an exhaustive architecture to perform separation of con-
cerns and thereby bootstrapping an LDA by only selecting
a minimal relevant configuration. For example, a developer
only needs to set the URL of his in-use SPARQL endpoint
and start developing the viewer components without deal-
ing with the underlying connection adapters and data flow
mediators in the system.

Standardization and Reusability of LDA UIs. Instead of
creating an LDA UI from scratch, in the component-based
development of LDA UIs, application assemblers choose from
a set of standard UIs which will reduce the time and costs
associated with the creation of LDAs. For example, to ren-
der DBpedia resources of type ‘Location’, a standard map
can be reused.

Customization and Personalization of LDA UIs. The
RDF-based nature of LD-R components allow application
assemblers to reshape their user interface based on the mean-
ing of data or user context. For example, for all the resources
of type foaf:Person, the content can be rendered with a
‘ContactCard’ component.

Adoption of LDA UIs by non-Semantic Web developers
and end-users. Most of the current Linked Data interfaces
fall into the Pathetic Fallacy of RDF [10] where they display
RDF data to the users as a graph because the underlying
data model is a graph. Abstracting the complexity of RDF
and graph-based data representation provides more Affor-
dances [17] for non-Semantic Web users to contribute to
Linked Data UIs. Engaging more UX designers and Web
developers into LDA UIs will also result in more affordances
on the end-user’s side to better understand the possible ac-
tions and advantages of the LDAs.

2. CONTRIBUTIONS AND OUTLINE
The contributions of this work are the concept of Adaptive
LD-R Web components and an open source implementation
available at http://ld-r.org. Our primary claim is that
adopting a component-based approach that encapsulates the
main concerns of a Semantic Web application, paves the way
to reusing existing best practices from the UX community
within the LDAs hence building more usable and pervasive
LDAs. We also present that combining the LD-R compo-
nents with LD-R scopes and configurations allows applica-
tion assemblers to provide a high level of flexibility in their
LDA UIs.

We explore these claims in stages. First, we collect some
data about the current status of Semantic Web UI devel-
opment. Next, we demonstrate how adaptive LD-R Web
components can address the current issues in LDA UI de-
velopment. Finally, we discuss the implementation of our
idea and its use in real-world scenarios.

3. THE CURRENT STATUS OF LINKED DATA
USER INTERFACE DEVELOPMENT

In order to understand the current pitfalls of LDA UI de-
sign, we conducted a survey targeting active Semantic Web
developers2. The participants where selected from the com-
munity of Semantic Web developers on Github who have had
at least one active Semantic Web-related repository. Github
is currently the most popular repository for open source code
and its transparent environment implies a suitable basis for
evaluating reuse and collaboration among developers [14,
22]. We used Github APIs3 to search4 for Semantic Web
repositories and to collect contact information for the corre-
sponding contributors when available. The search, after re-
moving organizations and invalid email addresses, resulted
in 650 potential Semantic Web developers. We then con-
tacted the candidates to ask them about the current pitfalls
in developing LDA UIs. In our enquiry, we clearly men-
tioned to skip the questionnaire if they have not developed
any Semantic Web application so far. We used a minimal set
of 7 questions to attract more responses and also used inline
forms for GMail users to allow filling out the questionnaire
in the same time as reading the enquiry email. We collected
79 responses to our questionnaire, which is a considerable
number of participants (almost 12% of the potential candi-
dates). Figure 1 shows the main results of our survey.

Participants. Based on their LDA development experience,
we divided the participants into three groups: basic (less
than 2 applications), intermediate (3-5 applications) and
advanced (more than 5 applications) developers. The re-
sult showed that the majority (62%) of participants were
intermediate and advanced developers. In addition to their
development experience, developers were asked about their
knowledge of Semantic Web to compare their practical and
conceptual experience. As results revealed, the majority
of participants (63%) had proficient (4-5 years) and expert
(more than 5 years) knowledge of Semantic Web and Linked
Data which makes a good sample for our evaluation.

Questions addressed the following topics:

• Amount of time spent on bootstrapping LDA UIs. Be-
fore designing the UIs in an LDA, developers need to
spend some time on creating the skeleton of their ap-
plication where querying data and the business logic
of the application is handled. The results confirm that
developers spend a lot of time (on average more than
2 days) on bootstrapping their LDAs before they can
start working on the UI.

• Reuse of code by Semantic Web developers. Devel-
opers usually reuse sections of code, templates, func-
tions, and objects to save time and resources when
developing LDAs. We asked participants about two
types of reuse: reuse by copy/pasting code from exist-
ing LDAs and reuse by employing current Web compo-
nents. Reuse by copy/pasting code can be seen as an
indicator of the state of standardization, modularity

2results are available at https://goo.gl/cltqhv
3https://developer.github.com/v3/
4keywords: ”Semantic Web” OR ”Linked Data” OR ”RDF”
OR ”SPARQL”

http://ld-r.org
https://goo.gl/cltqhv
https://developer.github.com/v3/

13	
 15	

2	

8	

17	

6	

5	

6	

7	

0	

5	

10	

15	

20	

25	

30	

35	

40	

Not	
 at	
 all	
 Not	
 Web	
 components	
 but	
 I	

do	
 use	
 plugins	
 from	
 libraries	

like	
 jQuery	

Yes,	
 I	
 use	
 components	
 like	

ReactJS	
 or	
 Polymer	

Code	
 Reuse	
 (Web	
 Components)	

basic	
 intermediate	
 advanced	

21	

7	

2	

8	

19	

4	

6	

7	

5	

0	

5	

10	

15	

20	

25	

30	

35	

40	

No,	
 I	
 usually	
 write	
 the	

code	
 from	
 the	
 scratch	

Yes	
 but	
 not	
 much	
 Yes,	
 I	
 do	
 it	
 much	
 and	

frequently	

Code	
 Reuse	
 (Copy/Paste)	

5	

3	

10	

7	

5	

4	

5	

9	

4	
 9	

6	

5	

2	

3	

2	

0	

5	

10	

15	

20	

25	

less	
 than	
 a	
 day	
 almost	
 one	
 day	
 2-­‐3	
 days	
 4-­‐7	
 days	
 more	
 than	
 a	

week	

N
um

be
r	
 o

f	
 p
ar
Oc
ip
an
ts
	

Time	
 spent	
 on	
 bootstrapping	
 the	
 UI	

7	

10	

6	
 7	

2	

4	
 12	

13	

1	

4	

5	

8	

0	

5	

10	

15	

20	

25	

30	

less	
 than	
 a	
 year	
 2-­‐3	
 years	
 4-­‐5	
 years	
 more	
 than	
 5	
 years	

N
um

be
r	
 o

f	
 p
ar
Oc
ip
an
ts
	

Knowledge	
 of	
 SemanAc	
 Web	

9	
 12	
 9	

1	

11	
 19	

3	

2	

13	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Not	
 at	
 all	
 I	
 do	
 it	
 but	
 not	
 frequently	
 I	
 do	
 it	
 frequently	

UI	
 AdaptaAon	

16	
 13	

1	

11	
 17	

3	

4	

11	

3	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Not	
 at	
 all	
 Yes,	
 I	
 had	
 to	
 spend	
 some	
 Ome	

explaining	
 the	
 SemanOc	
 Web	

concepts	

Yes	
 but	
 I	
 had	
 other	
 issues	

than	
 dealing	
 with	
 SemanOc	

Web	
 knowledge	

AdopAon	
 issues	
 with	
 non-­‐SW	
 users	

Figure 1: Results of our user study on the current status of LDA UI development.

and reusability of current LDAs. The results indicate
that a considerable amount of users (46%), prefer to
write the code from scratch instead of reusing code
from existing Semantic Web projects. This situation
is more pronounced for basic developers who still pre-
fer to write the code from scratch although they have
less experience in programming LDAs. Furthermore,
the results on reuse of Web components give an in-
sight on the adoption of current Web Components by
Semantic Web developers. The results indicate that
despite the prevalence of Web Components solutions,
only 19% of the participants (mainly advanced users)
were employing them in their applications. Interest-
ingly, the majority of participants (49%) were already
reusing other component-like libraries which shows an
attitude and capacity towards adopting the Web com-
ponents.

• Adaptation of LDA UIs. Most of the modern Web ap-
plications provide a mechanism to customize and per-
sonalize their user interfaces based on the type of data
and the information needs of their end-users. Proac-
tive user interface adaptation allows the application
to act more like a human and consequently, more in-
telligently [9]. As our study shows, within the current
LDA developers, 52% had experience adapting the user
interface of their applications frequently. There were
also 32% that were doing the UI adaptation but not
frequently.

• Adoption issues with non-Semantic Web developers.
In order to examine if there is a communication gap
between UI designers and Semantic Web developers,
we asked the participants about their experience when
collaborating with a non-SW developer. Among the
participants, 51% had communication issues with non-
Semantic Web developers to familiarize them with Se-

mantic Web concepts before they can start contribut-
ing to the application. The distribution of this issue
among more experienced developers (57% of the inter-
mediate and advanced users) further emphasizes the
importance of this communication gap.

4. ADAPTIVE LINKED DATA-DRIVEN WEB
COMPONENTS

In order to streamline the process of UI development in
LDAs, we propose an architecture of adaptive LD-R Web
components – Web components enriched by the RDF data
model. As shown in Figure 2, the proposed architecture ad-
dresses LDA UI reusability and flexibility by incorporating
RDF-based Web components and scopes. In the following
sections, the main elements of the architecture are described:

4.1 LD-R Web Components
As depicted in Figure 3, there are four core component lev-
els in an LD-R Web application. Each core component ab-
stracts the actions required for retrieving and updating the
graph-based data and provides a basis for user-defined com-
ponents to interact with Linked Data in three modes: view,
edit and browse.

The data-flow in the system starts from the Dataset compo-
nent which handles all the events related to a set of resources
under a named graph identified by a URI. The next level is
the Resource component which is identified by a URI and
indicates what is described in the application. A resource
is described by a set of properties which are handled by the
Property component. Properties can be either individual or
aggregate when combining multiple features of a resource
(e.g. a component that combines longitude and latitude
properties; start date and end date properties for a date
range, etc.). Each property is instantiated by an individ-

LD-R
Web Components

Scopes
Configurations

Interaction Mode

Core (RDF) Components

User-defined Components

View Edit Browse

Core Configurations

Component-specific Configurations

Semantic
Markup

Figure 2: Main elements of the adaptive LD-R Web
components architecture.

Dataset

Resource

Property

Value

Browser

Data Flow1

2

3

4

Viewer Editor

Figure 3: Core LD-R Web components.

ual value or multiple values in case of an aggregate object.
The value(s) of properties are controlled by the Value com-
ponent. In turn, Value components invoke different compo-
nents to view, edit and browse the property values. Viewer,
Editor and Browser components are terminals in the LD-R
single directional data flow where customized user-generated
components can be plugged into the system. User interac-
tions with the LD-R components are controlled by a set of
configurations defined on one or more selected component
levels known as scopes.

4.2 Scopes and Configurations
LD-R Web components provide a versatile approach for con-
text adaptation. A context can be a specific domain of inter-
est, a specific user requirement or both. In order to enable
customization and personalization, the LD-R approach ex-
ploits the concepts of Scope and Configuration. A scope is
defined as a hierarchical permutation of Dataset, Resource,
Property and Value components (cf. Figure 4). Each scope
conveys a certain level of specificity on a given context rang-
ing from 1 (most specific) to 15 (least specific). Scopes are
defined by using either the URIs of named graphs, resources
and properties, or by identifying the resource types and data
types. A configuration is defined as a setting which affects
the way the LDA and Web components are interpreted and

V

DRPD

P

D

R

P

V

V

D

R

D

V

V

P

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

R

P

V

D

P

V

P

V V

R

D

R P

R D

R

Value

DatasetResourceProperty

Figure 4: LD-R scopes based on the permutation of
dataset, resource, property and value identifiers.

R2

C8

C10

C7 C11

R4

D2

R3

P5P4P3P2P1

R1

D1

C3

C4

C2

App
C1

C5

C6

C9

Figure 5: A sample LD-R configuration hypergraph.

rendered (e.g. render a specific component for a specific
RDF property or enforce a component to display Wikipedia
page URIs for DBpedia resources). UI adaptation is han-
dled by traversing the configurations for scopes, populating
the configurations and overwriting them when a more spe-
cific applicable scope is found. As shown in Code 1 below,
in the worst case when the DRPV scopes are used and the UI
is supposed to render the Value components, all 15 scopes
need to be traversed for the adaptation:

1 InitialConfig = {initial application
configuration}

2 Context = [array of scopes with the
corresponding configuration objects]

3 Config = InitialConfig
4 for (i = 15; i < 1; i--) {
5 Config.compareWith(Context[i]) {
6 Config.addMissingAttributes ()
7 Config.overwriteExistingAttributes ()
8 }
9 }

Code 1: Algorithm for the LD-R UI adaptation.

Figure 5 demonstrates an example of the LD-R configura-
tion hypergraph containing scopes with the maximum depth

of DRP. The graph defines a generic configuration for the ap-
plication as C1. There are configurations defined for the
dataset scope D1 as C2, for the resource scope R2 as C3 and
for the property scope P2 as C4. There are also configu-
rations for the RP scope R2P2 as C5 and for the DRP scope
D1R2P2 as C6. Let’s suppose we have a setting with the
following values for the scopes and configurations:

• D1= <http://ld-r.org/users>

• R2= type foaf:Person

• P2= rdfs:label

• C1={{viewer:‘basic’},{attr1:1},{attr2:3}}
• C2={{attr1:0},{attr3:2}}
• C3={{attr3:1},{attr4:4},{attr5:1}}
• C4={{attr5:2},{attr6:1}}
• C5={{viewer:‘contact’},{attr3:5},{attr7:6}}
• C6={{attr3:8},{attr7:1},{attr8:3}}

With the above settings, when a property component for
rdfs:label is rendered without the dataset and resource
context, the configuration will be:

{{viewer:‘basic’},{attr1:1},{attr2:3},{attr5:2},{attr6:1}}

When the property component gets rendered within the re-
source context of type foaf:Person, the settings for viewer
and attr5 are overwritten and new settings for attr3, attr4
and attr7 are added:

{{viewer:‘contact’},{attr1:1},{attr2:3},{attr3:5},{attr4:4},
{attr5:1},{attr6:1},{attr7:6}}

When the additional context of dataset as <http://ld-

r.org/users> is given, attr3 and attr7 get overwritten and
a new setting for attr8 is added:

{{viewer:‘contact’},{attr1:0},{attr2:3},{attr3:8},{attr4:4},
{attr5:1},{attr6:1},{attr7:1},{attr8:3}}

Scopes can also be defined on a per user basis, facilitat-
ing the versioning and reuse of user-specific configurations.
User-Specific configurations provide different views on com-
ponents and thereby data, based on the different personas
dealing with them.

In addition to the fine-grained component customization,
LD-R Web applications provide a fine-grained access control
over the data through the component scopes. For exam-
ple, an application developer can restrict access to a specific
property of a specific resource in a certain dataset and on a
specific interaction mode.

4.3 Semantic Markup for Web Components
The innate support of RDF in LD-R Web components enable
the automatic creation of semantic markup on the UI level.
Lower semantic techniques such as RDFa, Mircodata and
JSON-LD can be incorporated in the core LD-R components
to expose structured data to current search engines which
are capable of parsing semantic markup. For example, an
LD-R component created based on the Good Relations5 or
Schema.org ontologies, can automatically expose the prod-

5http://www.heppnetz.de/projects/goodrelations/

Component
Developer

Application
Assembler End UserLinked Data

 Provider
Scopes &

Configurations
Core (RDF)
components

Linked Data Web Components Application User Interface

Figure 6: LD-R components life cycle.

uct data as Google Rich Snippets for products6 which will
provide better visibility of the data on Web search results
(i.e. SEO).

In addition to automatic annotation of data provided by the
LD-R Web components, the approach offers semi-automatic
markup of Web components by creating component meta-
data. Component metadata consists of two categories of
markup:

• Automatic markup generated by parsing component
package specification – metadata about the component
and its dependencies. It includes general metadata
such as name, description, version, homepage, author
as well as technical metadata on component source
repository and dependencies.

• Manual markup created by component authors which
exposes metadata such as component level (dataset,
resource, property, value), granularity (individual, ag-
gregate), mode (view, edit, browse) and configuration
parameters specification.

Similar to content markup, Component markup can utilize
commonly-known ontologies such as Schema.org in order
to improve the visibility of LD-R components and enable
application assemblers to better understand the intended
usage and capabilities of a given component.

4.4 Stackeholders and Life Cycle
As shown in Figure 6, the LD-R components lifecycle en-
compasses four primary types of stakeholders:

• Linked Data Provider. Since the LD-R approach fo-
cuses mainly on Linked Data applications, the provi-
sion of RDF-compliant data is an essential phase in
developing the LD-R components. There are differ-
ent stages [1] in Linked Data provision, including data
extraction, storage, interlinking, enrichment, quality
analysis and repair which should be taken into account
by data scientists and Linked Data experts. Once the
data and schemata are provided to the LD-R compo-
nent system, the system can bring a reciprocal value
to Linked Data providers to better understand and cu-
rate the data when needed. For example, in the case
of geo-coordinates, a map component can enable data

6https://developers.google.com/structured-data/

Schema.org
http://www.heppnetz.de/projects/goodrelations/
Schema.org
https://developers.google.com/structured-data/

Actions

StoresLD-R
Components

RESTful Services

Endpoint

communicate

CRUD

Data

update

render

action

Dispatcher
dispatch

Flux
unidirectional data flow

Figure 7: Data flow in the LD-Reactor framework.

providers to easily curate the outlier data (e.g. am-
biguous entities) within a certain geo boundary in a
visual manner.

• Component Developer. Component developers are UX
designers and Web programmers who are involved in
component fabrication. There are two types of Web
components developed in this step: a) Core compo-
nents (cf. Figure 3) which abstract the underlying
RDF data model. These components are built-in to
the system, however can still be overwritten by de-
velopers who have proficiency in Semantic Web and
Linked Data. b) Community-driven components which
exploit the core components. These components are
either created from scratch or by remixing and repur-
posing existing Web components found on the Web.

• Application Assembler. The main task of application
assemblers is to identify the right components and con-
figurations for the application; and to combine them in
a way which fits the application requirements. Within
the LD-R component system, the metadata provided
by each Web component facilitates the discovery of
relevant components. Having shared vocabularies on
Linked Open Data allows assemblers to not only reuse
components but also reuse the existing configurations
and scopes published on the Web. For example, if
there is already a suitable configuration for RP scope
which uses foaf:Person as resource type and dc-

terms:description as property URI, the assembler
can reuse that configuration within his application.

• End-User. End-users experience working with the com-
ponents to pursue goals in a certain application do-
main. As such, they may request the development
of new components or configurations in order to fulfil
their requirements and are expected to provide feed-
back on existing components.

5. IMPLEMENTATION
In order to realize the idea of adaptive Linked Data-driven
Web components, we implemented an open-source software
framework called Linked Data Reactor (LD-Reactor) which
is available online at http://ld-r.org. LD-Reactor utilizes

Facebook’s ReactJS7 components, the Flux8 architecture,
Yahoo!’s Fluxible9 framework for isomorphic Web applica-
tions (i.e. running the components code both on the server
and the client) and the Semantic-UI10 framework for flexible
UI themes. The main reasons we chose React components
over other Web Components solutions (e.g. Polymer11, An-
gularJS12, EmberJS13, etc.) were the maturity and main-
tainability of the technology, the native multi-platform sup-
port, the number of developer tools/components/applica-
tions, and the efficiency of its underlying virtual DOM ap-
proach14.

As shown in Figure 7, LD-Reactor follows the Flux architec-
ture which eschews MVC (Model-View-Controller) in favour
of a unidirectional data flow. When a user interacts with
a React component, the component propagates an action
through a central dispatcher, to the various stores that hold
the application’s data and business logic, and updates all af-
fected components. The component interaction with SPARQL
endpoints to retrieve and update Linked Data occurs through
the invocation of RESTful services in actions.

In order to allow the bootstrapping of LDA UIs, LD-Reactor
provides a comprehensive framework that combines the fol-
lowing main elements:

• A set of RESTful Web services that allow basic CRUD
operations on Linked Data using SPARQL queries15.

• A set of core components called Reactors which im-
plement core Linked Data components (see Figure 3)
together with their corresponding actions and stores.

• A set of default components which allow basic viewing,
editing and browsing of Linked Data.

• A set of minimal viable configurations based on the
type of data and properties from commonly-used vo-
cabularies on the Semantic Web (e.g. foaf, dcterms
and SKOS).

• A basic access control plugin which allows restricting
read/write access to data.

LD-Reactor implementation is compliant with Microservices
Architecture [13] where the existing ReactJS components
can be extended by complementary Linked Data services.
In contrast to the centralized monolithic architecture, the

7https://facebook.github.io/react/
8https://facebook.github.io/flux
9http://fluxible.io/

10http://semantic-ui.com/
11http://www.polymer-project.org/
12https://angularjs.org/
13http://emberjs.com/
14Elaborating on all these factors is beyond the scope of this
paper.

15the framework is compliant with the SPARQL 1.1 stan-
dard. However, we have identified certain inconsistencies
between OpenRDF Sesame and OpenLink Virtuoso RDF
stores, which did not allow the execution of syntactically
identical queries across both systems. Thereby, specific
adaptors have been implemented for each of these two RDF
stores.

http://ld-r.org
https://facebook.github.io/react/
https://facebook.github.io/flux
http://fluxible.io/
http://semantic-ui.com/
http://www.polymer-project.org/
https://angularjs.org/
http://emberjs.com/

microservices architecture allows placing the main function-
alities of the LDA into separate decoupled services and scale
by distributing these services across servers, replicating as
needed. This architectural style also helps to minimize the
redeploying of the entire application when changes in com-
ponents were requested.

Figure 8: A screenshot of LD-Reactor view and edit
mode for individual (top) and aggregate (bottom)
values.

There are three modes of interactions within LD-R com-
ponents namely view, browse and edit. These modes work
with two types of value granularity: individual and aggre-
gate. As shown in Figure 8, components can target indi-
vidual values or interact with aggregate values when users
want to show/update multiple values at once. Figure 9 de-
picts the browse mode where individual (e.g. item lists with
check boxes) and aggregate data browser (e.g. data sliders
or maps) components can be employed.

Semantic markup of data (as discussed in Section 4.3) is sup-
ported natively within the framework by embedding Micro-
data annotations within the LD-R Web components. Ad-
ditionally, in order to facilitate the creation of component
metadata, we developed a tool16 which automatically gen-
erates the general metadata about the components in JSON-

16https://github.com/ali1k/ld-r-metadata-generator

Figure 9: A screenshot of LD-Reactor browse mode.

LD, using Schema.org’s SoftwareApplication schema17.

6. USE CASES
The LD-Reactor framework is already in use within the RI-
SIS18 and Open PHACTS19 projects.

6.1 RISIS
The RISIS project aims to provide an infrastructure for re-
search and innovation, targeting researchers from various
science and technology domains. The LD-Reactor frame-
work was utilized in RISIS to help data providers with no
Linked Data experience to provide RDF metadata about
their datasets20. This metadata is then used to allow re-
searchers to search, identify, and request access to the data
they are interested in21. In the following, we present the
main requirements for configurations and components, to-
gether with their representation in the LD-Reactor configu-
ration file22.

Configurations:

• The UI should be able to to render metadata properties
in different categories (Code 2 line 3, 4).

• The labels for properties should be changeable in the
UI especially for technical properties (e.g. RDF dump)
that are unknown to researchers outside the Semantic
Web domain (Code 2 line 18, 26, 40).

• There should be a hint for properties to help meta-
data editors to understand the meaning of the property
(Code 2 line 20, 28, 41).

• Instead of showing the full URIs, the output UI should
render either a shortened URI or a meaningful string
linked to the original URI (Code 2 line 6).

17https://schema.org/SoftwareApplication
18http://risis.eu
19http://www.openphacts.org
20http://sms.risis.eu
21http://datasets.risis.eu
22see the complete configuration file at http://github.com/
risis-eu/sms-platform

https://github.com/ali1k/ld-r-metadata-generator
Schema.org
https://schema.org/SoftwareApplication
http://risis.eu
http://www.openphacts.org
http://sms.risis.eu
http://datasets.risis.eu
http://github.com/risis-eu/sms-platform
http://github.com/risis-eu/sms-platform

Figure 10: A screenshot of RISIS metadata editor and datasets portal powered by the LD-Reactor framework.

• Whenever a DBpedia URI is provided, display the cor-
responding Wikipedia URI enabling users to retrieve
human readable information (Code 2 line 33, 45).

• When a dropdown menu is provided, there should be
the ability to accommodate user-defined values which
are not listed in the menu (Code 2 line 57).

Components:

• A component for dcterms:spatial values to allow search-
ing and inserting resources from DBpedia based on the
entity type (e.g. Place, Person, Organization, etc).

• A component for dcterms:subject values to allow in-
serting and viewing DBpedia URIs as subject.

• A component for dcterms:language values to allow
inserting and viewing languages formatted in ISO 639-
1 using standard URIs (e.g.
http://id.loc.gov/vocabulary/iso639-1/en).

• A component for dcat:byteSize values to allow in-
serting and viewing file size specified by a unit.

• A component for dcterms:format values to allow in-
serting and viewing mime types.

In accordance to the LD-Reactor microservices architecture
(cf. Section 5), we built a DBpediaGMap viewer component
where we reused the current react-google-maps23 together
with DBpedia lookup and query services to retrieve the co-
ordinates for the recognized DBpedia resource values.
Figure 10 shows a screenshot of the generated UIs for meta-
data and search.

23http://github.com/tomchentw/react-google-maps

1 resource: {
2 ‘generic ’: {
3 usePropertyCategories: 1,
4 propertyCategories: [‘overview ’, ‘

legalAspects ’, ‘technicalAspects ’],
5 resourceReactor: [‘Resource ’],
6 shortenURI: 1
7 }
8 },
9 property: {

10 ‘generic ’: {
11 propertyReactor: [‘IndividualProperty ’],
12 objectReactor: [‘IndividualObject ’],
13 objectIViewer: [‘BasicIndividualView ’],
14 objectIEditor: [‘BasicIndividualInput ’]
15 },
16 ‘http://purl.org/dc/terms/language ’: {
17 allowNewValue: 1,
18 label: [‘Dataset Language ’],
19 category: [‘overview ’],
20 hint: [‘The language of the dataset.

Resources defined by the Library of
Congress (http://id.loc.gov/vocabulary/
iso639-1.html, http://id.loc.gov/
vocabulary/iso639-2.html) SHOULD be
used.’],

21 objectIViewer: [‘LanguageView ’],
22 objectIEditor: [‘LanguageInput ’],
23 defaultValue: [‘http://id.loc.gov/vocabulary

/iso639-1/en’]
24 },
25 ‘http://purl.org/dc/terms/spatial ’: {
26 label: [‘Geographical coverage ’],
27 category: [‘overview ’],
28 hint: [‘The geographical area covered by

the dataset.’],
29 allowNewValue: 1,
30 objectReactor: [‘AggregateObject ’],
31 objectAViewer: [‘DBpediaGoogleMapView ’],
32 objectIViewer: [‘BasicDBpediaView ’],
33 asWikipedia: 1,
34 objectAEditor: [‘BasicAggregateInput ’],
35 objectIEditor: [‘DBpediaInput ’],
36 lookupClass: [‘Place ’]
37 },
38 ‘http://purl.org/dc/terms/subject ’: {
39 category: [‘overview ’],
40 label: [‘Keywords ’],
41 hint: [‘Tags a dataset with a topic.’],
42 allowNewValue: 1,
43 objectIEditor: [‘DBpediaInput ’],
44 objectIViewer: [‘BasicDBpediaView ’],

http://id.loc.gov/vocabulary/iso639-1/en
http://github.com/tomchentw/react-google-maps

45 asWikipedia: 1
46 },
47 ‘http://purl.org/dc/terms/license ’: {
48 category: [‘legalAspects ’],
49 label: [‘License ’],
50 allowNewValue: 1,
51 objectIViewer: [‘BasicOptionView ’],
52 objectIEditor: [‘BasicOptionInput ’],
53 options: [
54 {label: ‘Open Data Commons Attribution

License ’, value: ‘http://www.
opendatacommons.org/licenses/by/’},

55 {label: ‘Creative Commons Attribution -
ShareAlike ’, value: ‘http://
creativecommons.org/licenses/by-sa/
3.0/’}

56],
57 allowUserDefinedValue: 1
58 }
59 }

Code 2: An excerpt of the LD-Reactor configuration
for the RISIS metadata editor.

6.2 Open PHACTS
The Open PHACTS Discovery Platform has been developed
to reduce barriers to drug discovery, by collecting and inte-
grating a large number of prominent RDF datasets in the
pharmacology domain. The platform provides a uniform
RESTful API for application developers to access the in-
tegrated data. In collaboration with the data providers,
the Open PHACTS consortium has created a comprehensive
dataset description specification24 based on the Vocabulary
of Interlinked Datasets (VoID)25. The metadata provided in
this context enables (among others) exposing the detailed
provenance for each result produced by the platform, the lo-
cation of source files for each dataset, and example resources.

The provision of VoID dataset descriptors that adhere to the
specification proved to be a non-trivial challenge, even for
data providers that are well versed in providing RDF dis-
tributions of their core data. A series of UIs were therefore
created to facilitate the creation of the VoID descriptors.
However, as the specification evolved over the first 2 years
of the project, any changes or additions made had to be re-
flected in the UI source code as well; a cumbersome process.
Due to the inevitable delay between specification changes
and UI development, users often found themselves having
to edit large RDF files using text editors, which resulted in
frequent syntax errors being made.

A new version of the VoID editor implemented using the LD-
Reactor framework is now available online26. Though the
import/export capabilities of the editor are still not imple-
mented at the time of writing, we have received very positive
feedback from the community for a number of reasons:

• UI updates: As the UI is generated based on the un-
derlying data, the process of staying up to date with
the current specification becomes trivial. The RDF
example provided by the specification can be simply

24http://www.openphacts.org/specs/2013/
WD-datadesc-20130912/

25http://www.w3.org/TR/void/
26http://void.ops.labs.vu.nl/ Source: http://github.
com/openphacts/ld-r

Figure 11: A screenshot of the BasicCalendarIn-
put LD-R component created to allow the editing
of datetimes in Open PHACTS VoID descriptions.

loaded into the RDF store and the changes are im-
mediately visible in the UI through the default core
components. Users are then able to adapt the exam-
ple VoID description to their dataset. The resulting
VoID file can be downloaded by exporting all triples
in the named graph corresponding to the dataset.
• Dataset releases: A large number of property values

remain the same across releases. Similarly with using
the example from the Dataset Description Specifica-
tion, users are able to upload their old VoID descrip-
tion and only edit the outdated values.
• Access control: Using the built–in user authentication

mechanism of LD-Reactor we were able to ensure that
only the owner(s) of a particular dataset are able to
edit its metadata.
• Non-standard properties: Some data providers elect to

include additional properties that are not prescribed
by the specification. The visualisation of such prop-
erties is supported easily using the core LD-R compo-
nents.
• Intuitive navigation: Typically, each dataset consists

of a number of subsets, which are also of type void:Dataset,
and may have further subsets themselves. Displaying
all the information together can easily become confus-
ing for the user; instead the LD-Reactor framework
was used to provide navigation through the subset
links, displaying only a single dataset (or subset) at
a time.
• Datetime component: Manually typing datetimes in

the required format (e.g. ‘2015-02-12T16:48:00Z’) can
be an error prone process. Instead, we have been
able to reuse the react-bootstrap-datetimepicker27

component, to create a new LD-R value editor for date-
times (BasicCalendarInput 28) with a graphical inter-
face as shown in Figure 11.

27https://github.com/quri/react-bootstrap-datetimepicker
28https://github.com/openphacts/ld-r/blob/
master/components/object/editor/individual/
BasicCalendarInput.js

http://www.openphacts.org/specs/2013/WD-datadesc-20130912/
http://www.openphacts.org/specs/2013/WD-datadesc-20130912/
http://www.w3.org/TR/void/
http://void.ops.labs.vu.nl/
http://github.com/openphacts/ld-r
http://github.com/openphacts/ld-r
https://github.com/quri/react-bootstrap-datetimepicker
https://github.com/openphacts/ld-r/blob/master/components/object/editor/individual/BasicCalendarInput.js
https://github.com/openphacts/ld-r/blob/master/components/object/editor/individual/BasicCalendarInput.js
https://github.com/openphacts/ld-r/blob/master/components/object/editor/individual/BasicCalendarInput.js

In addition to the significant improvements over previous
versions of the VoID editor outlined above, we were able to
develop the LD-Reactor version in a fraction of the time that
was required for earlier versions.

7. RELATED WORK
Component-based software engineering (CBSE) has been an
active research area since 1987 with numerous results pub-
lished in the research literature [23]. Within the Seman-
tic Web community, the main focus has been on enriching
current service-oriented architectures (SOAs) with semantic
formalisms and thereby providing Semantic Web services as
reusable and scalable software components [24]. There have
also been a few attempts to create Semantic Web Compo-
nents by integrating existing Web-based components with
Semantic Web technology [3, 7].

When it comes to component-based development of LDAs,
the works typically fall into software application frameworks
that address building scalable LDAs in a modular way. The
survey conducted by [8] identified the main issues in cur-
rent Semantic Web applications and suggested the provision
of component-based software frameworks as a potential so-
lution to the issues identified. The Semantic Web Frame-
work [4] was one of the first attempts in that direction to
decompose the LDA development requirements into an ar-
chitecture of reusable software components. In most of the
current full-stack LDA frameworks such as Callimachus29

and LDIF30 the focus is mainly on the backend side of LDAs
and less attention is paid on how Linked Data is consumed
by the end-user. There are also more flexible application
frameworks such as OntoWiki [6] which provide UI widgets
and extensions to expose Linked Data to non-Semantic Web
end-users.

Besides these generic LDA frameworks, there are also ap-
proaches that focus on the development of user interfaces for
LDAs. WYSIWYM (What You See Is What You Mean) [12]
is a generic semantics-based UI model to allow integrated vi-
sualization, exploration and authoring of structured and un-
structured data. Our proposed approach utilizes the WYSI-
WYM model for binding RDF-based data to viewer, edi-
tor and browser UIs. Uduvudu [15] is another approach to
making an adaptive RDF-based UI engine to render Linked
Data. Instead of adopting Web components, Uduvudu em-
ploys a set of flexible UI templates that can be combined
to create complex UIs. Even though the static templates
do not provide enough interactions for editing and browsing
data (in contrast to Web components), we believe that al-
gorithms for automatic selection of templates employed in
Uduvudu can be reused in the LD-Reactor framework for
automatic generation of configurations. Another similar ap-
proach is SemwidgJS [21] which brings a semantic Widget
library for the rapid development of LDA UIs. SemwidgJS
offers a simplified query language to allow the navigation
of graph-based data by ordinary Web developers. The main
difference between LD-R and SemwidgJS is that LD-Reactor
suggests a more interactive model which is not only for dis-
playing Linked Data but also for providing user adaptations
based on the meaning of data. LD-Viewer [16] is another re-

29http://callimachusproject.org/
30http://ldif.wbsg.de/

lated Linked Data presentation framework particularly tai-
lored for the presentation of DBpedia resources. In con-
trast to LD-Reactor, LD-Viewer builds on top of the tra-
ditional MVC architecture and its extensions rely heavily
on the knowledge of RDF which is a burden for developers
unfamiliar with Semantic Web technologies.

In addition to the LDA UI frameworks, there are several
ad-hoc tools for Linked Data visualization and exploration
such as Balloon Synopsis [19] and Sgvizler [20] which can be
utilized as Web components within the LD-Reactor frame-
work. [18] provides an extensive list of these tools aiming to
make Linked Data accessible for common end-users who are
not familiar with Semantic Web.

Overall, what distinguishes LD-Reactor from the existing
frameworks and tools is its modern isomorphic component-
based architecture that addresses reactive and reusable UIs
as its first class citizen.

8. CONCLUSION AND FUTURE WORK
This paper presented adaptive Linked Data-driven Web com-
ponents as a solution to increase the usability of current
Linked Data applications. The proposed component-based
solution emphasizes the reusability and separation of con-
cerns in respect to developing Linked Data applications. The
RDF-based UI adaptation mechanism aims to provide bet-
ter customization and personalization based on the meaning
of data. Furthermore, employing standard Web components
aspires to bring a better communication between UX design-
ers and Semantic Web developers in order to reuse best UI
practices within Linked Data applications.

We argue that bridging the gap between Semantic Web Tech-
nologies and Web Components worlds brings mutual bene-
fits for both sides. On one hand, Semantic Web technologies
provide support for richer component discovery, interoper-
ability, integration, and adaptation on the Web. On the
other, Web Components bring the advantages of UI stan-
dardization, reusability, replaceability and encapsulation to
current Semantic Web applications.

As our future plan, we envisage creating a cloud infrastruc-
ture for sharing and reusing LD-R scopes and configurations
as well as LD-R Web components without the need to in-
stall the framework. We also plan to make a user interface
to facilitate creation of the LD-R scopes and configurations.
Another direction for future research is developing mecha-
nisms for the automatic configuration and composition of
Web components based on the semantic markup provided.

9. AKNOWLEDGEMENT
We would like to thank professor Peter van den Besselaar
from the faculty of Social Sciences and our colleagues from
the Knowledge Representation & Reasoning research group
at VU University Amsterdam for their helpful comments
during the development of the LD-Reactor framework. This
work was supported by a grant from the European Union’s
7th Framework Programme provided for the project RISIS
(GA no. 313082).

http://callimachusproject.org/
http://ldif.wbsg.de/

10. REFERENCES
[1] S. Auer, J. Lehmann, A.-C. Ngonga Ngomo, and

A. Zaveri. Introduction to linked data and its lifecycle
on the web. In Proceedings of the 9th International
Conference on Reasoning Web: Semantic Technologies
for Intelligent Data Access, RW’13, pages 1–90, Berlin,
Heidelberg, 2013. Springer-Verlag.

[2] E. Benson and D. R. Karger. End-users publishing
structured information on the web: An observational
study of what, why, and how. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in
Computing Systems, CHI ’14, pages 1265–1274, New
York, NY, USA, 2014. ACM.

[3] M. Casey and C. Pahl. Web components and the
semantic web. Electr. Notes Theor. Comput. Sci.,
82(5):156–163, 2003.

[4] R. G. Castro, A. G. Pérez, and M. n.-G. Óscar. The
Semantic Web Framework: A Component-Based
Framework for the Development of Semantic Web
Applications. In DEXA ’08: Proceedings of the 2008
19th International Conference on Database and Expert
Systems Application, pages 185–189, Washington, DC,
USA, 2008. IEEE Computer Society.

[5] D. Cooney. Introduction to web components, 2014.
http://www.w3.org/TR/components-intro/.

[6] P. Frischmuth, M. Martin, S. Tramp, T. Riechert, and
S. Auer. OntoWiki—An Authoring, Publication and
Visualization Interface for the Data Web. Semantic
Web Journal, 2014.

[7] O. Hartig, M. Kost, and J. C. Freytag. Designing
component-based semantic web applications with
DESWAP. In C. Bizer and A. Joshi, editors,
Proceedings of the Poster and Demonstration Session
at the 7th International Semantic Web Conference
(ISWC2008), Karlsruhe, Germany, October 28, 2008,
volume 401 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[8] B. Heitmann, S. Kinsella, C. Hayes, and S. Decker.
Implementing semantic web applications: reference
architecture and challenges. In 5th International
Workshop on Semantic Web-Enabled Software
Engineering, 2009.

[9] R. Hervás and J. Bravo. Towards the ubiquitous
visualization: Adaptive user-interfaces based on the
semantic web. Interacting with Computers,
23(1):40–56, 2011.

[10] D. Karger and M. Schraefel. The pathetic fallacy of
rdf. Position Paper for SWUI06, 2006.

[11] A. Khalili and S. Auer. User interfaces for semantic
authoring of textual content: A systematic literature
review. Web Semantics: Science, Services and Agents
on the World Wide Web, 22(0):1 – 18, 2013.

[12] A. Khalili and S. Auer. Wysiwym – integrated
visualization, exploration and authoring of
semantically enriched un-structured content. Semantic
Web Journal, 2014.

[13] J. Lewis and M. Fowler. Microservices, 2014. http:
//martinfowler.com/articles/microservices.html.

[14] A. Lima, L. Rossi, and M. Musolesi. Coding Together
at Scale: GitHub as a Collaborative Social Network.
In Proceedings of the 8th AAAI International
Conference on Weblogs and Social Media

(ICWSM’14), Ann Arbor, Michigan, USA, June 2014.

[15] M. Luggen, A. Gschwend, A. Bernhard, and
P. Cudre-Mauroux. Uduvudu: a graph-aware and
adaptive ui engine for linked data. In C. Bizer,
S. Auer, T. Berners-Lee, and T. Heath, editors,
Proceedings of the Workshop on Linked Data on the
Web (LDOW), number 1409 in CEUR Workshop
Proceedings, Aachen, 2015.

[16] D. Lukovnikov, C. Stadler, and J. Lehmann. Ld
viewer - linked data presentation framework. In
Proceedings of the 10th International Conference on
Semantic Systems, SEM ’14, pages 124–131, New
York, NY, USA, 2014. ACM.

[17] D. A. Norman. The Design of Everyday Things:
Revised and Expanded Edition. Basic Books, Inc., New
York, NY, USA, 2013.

[18] S. Ojha, M. Jovanovic, and F. Giunchiglia.
Entity-centric visualization of open data. In
J. Abascal, S. Barbosa, M. Fetter, T. Gross,
P. Palanque, and M. Winckler, editors,
Human-Computer Interaction INTERACT 2015,
volume 9298 of Lecture Notes in Computer Science,
pages 149–166. Springer International Publishing,
2015.

[19] K. Schlegel, T. Weißgerber, F. Stegmaier,
M. Granitzer, and H. Kosch. Balloon synopsis: A
jquery plugin to easily integrate the semantic web in a
website. In R. Verborgh and E. Mannens, editors,
Proceedings of the ISWC Developers Workshop 2014,
co-located with the 13th International Semantic Web
Conference (ISWC 2014), Riva del Garda, Italy,
October 19, 2014., volume 1268 of CEUR Workshop
Proceedings, pages 19–24. CEUR-WS.org, 2014.

[20] M. G. SkjÃ ↪eveland. Sgvizler: A javascript wrapper for
easy visualization of sparql result sets. In 9th Extended
Semantic Web Conference (ESWC2012), May 2012.

[21] T. Stegemann and J. Ziegler. Semwidgjs: A semantic
widget library for the rapid development of user
interfaces for linked open data. In 44. Jahrestagung
der Gesellschaft für Informatik, Informatik 2014, Big
Data - Komplexität meistern, 22.-26. September 2014
in Stuttgart, Deutschland, pages 479–490, 2014.

[22] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s talk about
it: Evaluating contributions through discussion in
github. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 144–154, New York,
NY, USA, 2014. ACM.

[23] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota
Silveira Neto, Y. a Cerqueira Cavalcanti, and S. R.
de Lemos Meira. Twenty-eight years of
component-based software engineering. Journal of
Systems and Software, 2015.

[24] H. H. Wang, N. Gibbins, T. Payne, A. Patelli, and
Y. Wang. A survey of semantic web services
formalisms. Concurrency and Computation: Practice
and Experience, 27(15):4053–4072, 2015.
10.1002cpe.3481.

http://www.w3.org/TR/components-intro/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

	Introduction
	Contributions and Outline
	The Current Status of Linked Data User Interface Development
	Adaptive Linked Data-driven Web Components
	LD-R Web Components
	Scopes and Configurations
	Semantic Markup for Web Components
	Stackeholders and Life Cycle

	Implementation
	Use Cases
	RISIS
	Open PHACTS

	Related Work
	Conclusion and Future Work
	Aknowledgement
	References

