
Linked Data Reactor: Towards Data-aware User Interfaces

Ali Khalili
Department of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

a.khalili@vu.nl

Klaas Andries de Graaf
Department of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

ka.de.graaf@vu.nl

ABSTRACT
Most of the existing Web user interfaces (UIs) are hard-
coded by their developers to address certain predefined types
of data, and hence are blind to the semantics of data they
are dealing with. When talking about unstructured data
or data without an explicit semantic representation, our ex-
pectations of data-awareness are lower. However, when we
consider Linked Data UIs, where we have both structured
data and semantics, we indeed expect more awareness from
the UI which renders the data. In this paper we present an
architecture for data-aware UIs, called Linked Data Reac-
tor, implemented based on Web components and Semantic
Web technologies. The proposed UIs can understand users’
data and are capable to interact with users accordingly.

Keywords
Semantic Web, Linked Data, User Interfaces, Adaptation

1. INTRODUCTION
Most of the existing Web user interfaces (UIs) are hard-

coded by their developers to address certain predefined types
of data, hence are blind to the semantics of data they are
dealing with. When talking about unstructured data or
data without an explicit semantic representation, our ex-
pectations of data-awareness are lower. However, when we
consider Linked Data UIs where we have both data and
semantics, we indeed expect more awareness from the UI
which renders the data. For example, Figure 1 shows DB-
pedia pages for three totally different entity types (Apple
as a Fruit, Apple as a Company and Amsterdam as a City)
which are presented with the same generic template, com-
pletely ignoring the meaning of the underlying data. In this
case, it does not matter what the data user thinks or what
the underlying data means, what matters is what the appli-
cation developer thinks! A user might instead want to see
Apple’s shareholders and its stock status, or see the health
benefits of apples, or, being a farmer, see information on
how to grow apples. A relevant question here is why UIs

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

can understand data but do not interact with users accord-
ingly? It is because there is a gap between what UIs provide
(functionality) and what the meaning of data is (semantics).
Making a bridge between the emerging two worlds of Web
Components and Semantic Web technologies is an approach
to support UIs that understand users’ data and are capable
to interact with users accordingly. In [6], we conducted a
survey targeting 79 active Semantic Web developers to ask
them about the current pitfalls in developing Semantic Web
UIs. Based on the results, developers spend a lot of time
(on average more than 2 days) on bootstrapping their appli-
cations before they can start working on the UI. A consid-
erable amount of users (46%), prefer to write the code from
scratch instead of reusing code from existing Semantic Web
projects and 52% had experience of manually adapting the
user interface of their applications frequently. To address
those concerns, in this paper we present an architecture for
data-aware UIs implemented in a software framework called
Linked Data Reactor (LD-R).

2. ARCHITECTURE
Figure 2 depicts our proposed architecture for data-aware

UIs where related elements are color coded. The system
provides three main modes of interaction with data namely
view, browse, and edit. The system adapts its behavior
during user interactions by providing appropriate interactive
UI components based on the semantics of data and the given
user context. In the following sections we describe the main
building blocks of the architecture.

2.1 Interaction Layer
LD-R exploits four core component levels (i.e., reactor

components) to abstract the actions required for retrieving
and updating the graph-based data and provides a basis for
user-defined components to interact with Linked Data in
three modes: view, edit and browse. The data-flow in the
system starts from the Dataset component which handles
all the events related to a set of resources under a named
graph identified by a URI. The next level is the Resource
component which is identified by a URI and indicates what
is described in the application. A resource is described by a
set of properties which are handled by the Property compo-
nent. Properties can be either individual or aggregate when
combining multiple features of a resource (e.g. a component
that combines longitude and latitude properties; start date
and end date properties for a date range, etc.). Each prop-
erty is instantiated by an individual value or multiple values
in case of an aggregate object. The value(s) of properties are

10.1145/1235


Figure 1: Same presentation of data for totally different entity types on DBpedia.

User Profile

Edit

Browse
Data

Se
m

an
tic

s Reasoning

Personalization

Interactive
UI

Components

User

Customization

Selection

View Querying

Background
Knowledge

Adaptation EngineData Layer UI LayerInteraction Layer

Enrichment

Figure 2: The proposed architecture for data-aware
UIs implemented in the LD-R framework.

controlled by the Value component. In turn, Value compo-
nents invoke different components to view, edit and browse
the property values. Also see Figure 4.

Viewer, Editor and Browser components are terminals in
the LD-R single directional data flow where customized user-
generated components can be plugged into the system. For
instance, the following components are already built-in to
the system1:

• Viewer : ImageView, MapView, OptionView,
LanguageView, DBpediaView, YASQEView

• Browser : TagList, GeoList, ChartList, GeoList

• Editor : CalendarInput, DBpediaInput, LanguageIn-
put, PrefixInput, OptionInput

2.2 Data Layer
There are five different sorts of data taken into account

within the LD-R environment: 1) user’s profile data to un-
derstand the user preferences, 2) user’s background knowl-
edge to consider a user’s domain of interest while brows-
ing data, 3) original data to be browsed, 4) configuration
data as output of adaptation process to customize and per-
sonalize both data and UIs, 5) complementary data added
as enrichment to original data for richer contextualization.
All the above datasets are represented as single or multiple
RDF graphs) to be ready for integration (using federated
SPARQL queries) and analysis.

1full list of components is available at http://demo.ld-r.org/
documentation

Figure 3: Interactive Content Annotation in LD-R.

LD-R supports resource annotation to interlink the origi-
nal data with the user’s background knowledge and to gen-
erate complementary data connected to the original data
to be browsed. At the moment, two types of annotation
are supported within the system: Named Entity Recognition
(NER) using DBpedia Spotlight2 and Geo-boundary-tagging
supported by open geo boundaries from OpenStreetMap and
GADM3. As shown in Figure 3, there are interactive UIs
embedded in the LD-R system to annotate a dataset while
progressively communicating the results of annotation.

Another feature which is supported out-of-the-box in LD-
R is embedding RDFa and Microdata annotations for exter-
nal applications such as search engines to extract structured
data from LD-R powered UI components. For example, an
LD-R component created based on the Good Relations or
Schema.org ontologies, can automatically expose the prod-
uct data as Google Rich Snippets, which will provide better
visibility of the data on Web search results (i.e. SEO).

2.3 Adaptation Engine
An adaptive UI4 is a UI which adapts, that is, changes its

layout and elements to the needs of the user or context and
is similarly alterable by each user. LD-R incorporates an

2
http://www.dbpedia-spotlight.org

3
http://gadm.org

4
http://en.wikipedia.org/wiki/Adaptive user interface

http://demo.ld-r.org/documentation
http://demo.ld-r.org/documentation
http://www.dbpedia-spotlight.org
http://gadm.org
http://en.wikipedia.org/wiki/Adaptive_user_interface


C8

C10

C7 C11

Organizations

D2

Projects

boundarynamefoundation
YearcountrylocatedIn

Universities

D1

C3

C4

C2

App
C1

C5

C6

C9

Universities

User

Data
set

Res
ou

rce

Pr
op

ert
y

Figure 4: An example configuration hypergraph.

adaptation engine to realize data-aware UIs when users in-
teract with data. The task of adaptation engine is to make a
bridge between data (enriched by semantics) and existing UI
components suitable to render data. The adaptation engine
includes the following core components:

• Querying. This part is responsible for composing, shar-
ing and running of SPARQL queries within the LD-R
environment. The queries are used to retrieve manual
user-driven configurations.

• Reasoning. This is the core part of the engine where
different datasets mentioned in Section 2.2 are ana-
lyzed in an integrative way to find the best strategy
for data rendering and UI augmentation.

• Selection. This part allows to manually or automat-
ically, as a result of reasoning, select or replace and
existing UI component.

• Customization. This part allows to manually or auto-
matically customize an existing UI component.

• Personalization. This part allows to manually or auto-
matically personalize an existing UI component. Per-
sonalization will overwrite the configurations used for
customization to consider the user’s context.

Figure 4 shows that the configuration process is done by
traversing the hypergraph generated either manually by a
user or automatically as result of reasoning. LD-R exploits
a hierarchical permutation of the Dataset, Resource, Prop-
erty, and Value (DRPV) components as scopes to select spe-
cific parts of the UI to be customized or personalized. Each
scope conveys a certain level of specificity on a given context
ranging from 1 (most specific: DRPV) to 15 (least specific:
D (Dataset). Scopes are defined by using either the URIs of
named graphs, resources, and properties, or by identifying
the resource types and data types. A configuration is de-
fined as a setting which affects the way the UI components
are interpreted and rendered (e.g., render a specific compo-
nent for a specific RDF property or a specific RDF resource
within a specific RDF graph). UI adaptation is handled by

Figure 5: Edit, View and Browse mode in the LD-R.

traversing the configurations for scopes, populating the con-
figurations and overwriting the configurations when a more
specific applicable scope is found.

3. IMPLEMENTATION
Linked Data Reactor (LD-R) is implemented as an open

source project which is available online at http://ld-r.org
together with documentation and demos5. LD-R utilizes
Facebook’s ReactJS components, the Flux architecture, Ya-
hoo!’s Fluxible framework for isomorphic Web applications
(i.e. running the components code both on the server and
the client) and the Semantic-UI framework for flexible UI
themes. Figure 5 shows an screenshot of the LD-R environ-
ment to view and browse DBpedia scientists, and also to
edit a sample dataset.

LD-R is currently used in the SMS6 (Semantically Map-
ping Science) platform as the technical core within the RI-
SIS.eu project to view, browse and edit data related to Sci-
ence, Technology and Innovation (STI) studies.

4. RELATED WORK
Component-based software engineering (CBSE) has been

an active research area since 1987 with numerous results
published in the research literature [12]. Within the Seman-
tic Web community, the main focus has been on enriching
current service-oriented architectures (SOAs) with semantic
formalisms and thereby providing Semantic Web services as
reusable and scalable software components [13]. There have
also been a few attempts to create Semantic Web Compo-
nents by integrating existing Web-based components with

5http://demo.ld-r.org
6 http://sms.risis.eu

http://ld-r.org
http://demo.ld-r.org
http://sms.risis.eu


Semantic Web technology [1, 4]. The Semantic Web Frame-
work [2] was one of the first attempts in that direction to de-
compose the Linked Data Application (LDA) development
requirements into an architecture of reusable software com-
ponents. In most of the current full-stack LDA frameworks
such as Callimachus7 and LDIF8 the focus is mainly on the
backend side of LDAs and less attention is paid on how
Linked Data is consumed by the end-user. There are also
more flexible application frameworks such as OntoWiki [3]
which provide UI widgets and extensions to expose Linked
Data to non-Semantic Web end-users.

Besides these generic LDA frameworks, there are also ap-
proaches that focus on the development of user interfaces for
LDAs. WYSIWYM (What You See Is What You Mean) [5]
is a generic semantics-based UI model to allow integrated vi-
sualization, exploration and authoring of structured and un-
structured data. Our proposed approach utilizes the WYSI-
WYM model for binding RDF-based data to viewer, editor
and browser UIs. Uduvudu [7] is another approach to mak-
ing an adaptive RDF-based UI engine to render LD. Instead
of adopting Web components, Uduvudu employs a set of
flexible UI templates that can be combined to create com-
plex UIs. Even though the static templates do not provide
enough interactions for editing and browsing data (in con-
trast to Web components), we believe that algorithms for au-
tomatic selection of templates employed in Uduvudu can be
reused in the LD-R framework for automatic generation of
configurations. Another similar approach is SemwidgJS [11]
which brings a semantic Widget library for the rapid devel-
opment of LDA UIs. SemwidgJS offers a simplified query
language to allow the navigation of graph-based data by
ordinary Web developers. The main difference between LD-
R and SemwidgJS is that LD-R suggests a more interac-
tive model which is not only for displaying LD but also for
providing user adaptations based on the meaning of data.
LD-Viewer [8] is another related Linked Data presentation
framework particularly tailored for the presentation of DB-
pedia resources. In contrast to LD-R, LD-Viewer builds on
top of the traditional MVC architecture and its extensions
rely heavily on the knowledge of RDF which is a burden for
developers unfamiliar with SW technologies. In addition to
the LDA UI frameworks, there are several ad-hoc tools for
Linked Data visualization and exploration such as Balloon
Synopsis [9] and Sgvizler [10] which can be utilized as Web
components within the LD-R framework.

In overall, what distinguishes LD-R from the existing frame-
works and tools is its modern semantics-based isomorphic
component-based architecture that combines reactive and
reusable UIs with explicit semantics found in data to realize
the idea of data-aware UIs.

5. CONCLUSIONS
This paper presented the Linked Data Reactor (LD-R)

open-source software framework as a solution to implement
data-aware user interfaces (UIs) – UIs that can understand
users’ data and can interact accordingly. The proposed
semantically-enriched component-based architecture aims to
provide better UI customization and personalization based
on the meaning of data and the context of user.

We argue that bridging the gap between Semantic Web

7http://callimachusproject.org/
8http://ldif.wbsg.de/

Technologies and Web Components worlds brings mutual
benefits for both sides. On one hand, Semantic Web tech-
nologies provide support for richer component discovery, in-
teroperability, integration, and adaptation on the Web. On
the other, Web Components bring the advantages of UI
adaptation, standardization, reusability, replaceability and
encapsulation to current Semantic Web applications.

Acknowledgement
This work was supported by a grant from the European
Union’s 7th Framework Programme provided for the project
RISIS (GA no. 313082).

6. REFERENCES
[1] M. Casey and C. Pahl. Web components and the semantic

web. Electr. Notes Theor. Comput. Sci., 82(5), 2003.

[2] R. G. Castro, A. G. Pérez, and M. n.-G. Óscar. The
Semantic Web Framework: A Component-Based
Framework for the Development of Semantic Web
Applications. In DEXA ’08, pages 185–189, Washington,
DC, USA, 2008. IEEE Computer Society.

[3] P. Frischmuth, M. Martin, S. Tramp, T. Riechert, and
S. Auer. OntoWiki—An Authoring, Publication and
Visualization Interface for the Data Web. Semantic Web
Journal, 2014.

[4] O. Hartig, M. Kost, and J. C. Freytag. Designing
component-based semantic web applications with
DESWAP. In Poster and Demonstration Session at the
ISWC2008, 2008.

[5] A. Khalili and S. Auer. Wysiwym – integrated visualization,
exploration and authoring of semantically enriched
un-structured content. Semantic Web Journal, 2014.

[6] A. Khalili, A. Loizou, and F. van Harmelen. Adaptive
linked data-driven web components: Building flexible and
reusable semantic web interfaces. In ESWC2016, pages
677–692, 2016.

[7] M. Luggen, A. Gschwend, A. Bernhard, and
P. Cudre-Mauroux. Uduvudu: a graph-aware and adaptive
ui engine for linked data. In C. Bizer, S. Auer,
T. Berners-Lee, and T. Heath, editors, Workshop on Linked
Data on the Web (LDOW), number 1409 in CEUR
Workshop Proceedings, Aachen, 2015.

[8] D. Lukovnikov, C. Stadler, and J. Lehmann. Ld viewer -
linked data presentation framework. In Proceedings of the
10th International Conference on Semantic Systems, SEM
’14, pages 124–131, New York, NY, USA, 2014. ACM.

[9] K. Schlegel, T. Weißgerber, F. Stegmaier, M. Granitzer,
and H. Kosch. Balloon synopsis: A jquery plugin to easily
integrate the semantic web in a website. In ISWC
Developers Workshop, pages 19–24, 2014.

[10] M. G. SkjÃ ↪eveland. Sgvizler: A javascript wrapper for easy
visualization of sparql result sets. In ESWC2012, May 2012.

[11] T. Stegemann and J. Ziegler. Semwidgjs: A semantic
widget library for the rapid development of user interfaces
for linked open data. In 44. Jahrestagung der Gesellschaft
für Informatik, Informatik 2014, Big Data - Komplexität,
pages 479–490, 2014.

[12] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota
Silveira Neto, Y. a Cerqueira Cavalcanti, and S. R.
de Lemos Meira. Twenty-eight years of component-based
software engineering. Journal of Systems and Software,
2015.

[13] H. H. Wang, N. Gibbins, T. Payne, A. Patelli, and
Y. Wang. A survey of semantic web services formalisms.
Concurrency and Computation: Practice and Experience,
27(15):4053–4072, 2015. 10.1002cpe.3481.

http://callimachusproject.org/
http://ldif.wbsg.de/

	Introduction
	Architecture
	Interaction Layer
	Data Layer
	Adaptation Engine

	Implementation
	Related Work
	Conclusions
	References

